1. Let \mathbf{r} be a parametrization of a subset of the $x y$-plane in \mathbb{R}^{3} so that

$$
\mathbf{r}(u, v)=(x(u, v), y(u, v), 0), \quad(u, v) \in U
$$

Determine $\mathbf{r}_{u} \wedge \mathbf{r}_{v}$ and show that the area of $\mathbf{r}(U)$ equals

$$
\iint_{U}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

2. Part of a catenoid is formed by rotating the graph of $y=\cosh x$ (where $a \leqslant x \leqslant b$) about the x-axis. Calculate the area of the resulting surface.
3. Let $0<\alpha<\pi / 2$ and let S_{α} be the cap of the unit sphere $x^{2}+y^{2}+z^{2}=1$ parametrized as

$$
\mathbf{r}(\theta, \phi)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \quad 0<\theta<\alpha, 0<\phi<2 \pi .
$$

(i) Determine $\mathbf{r}_{\theta} \wedge \mathbf{r}_{\phi}$ and show that the surface area of S_{α} equals $2 \pi(1-\cos \alpha)$.
(ii) Rederive the result of (i) by considering the cap as part of the graph $z=\sqrt{1-x^{2}-y^{2}}$ and using the formula for a graph's surface area.
4. Let θ and ϕ denote spherical polar co-ordinates on the unit sphere $x^{2}+y^{2}+z^{2}=1$. The Albers equal-area conic projection is defined by

$$
x=\frac{1}{n} \sqrt{C-2 n \cos \theta} \sin n \phi, \quad y=\rho_{0}-\frac{1}{n} \sqrt{C-2 n \cos \theta} \cos n \phi
$$

where n, C, ρ_{0} are constants. Describe the image in the plane of a latitude ($\theta=$ const.) and a meridian ($\phi=$ const.) Determine the Jacobian $|\partial(x, y) / \partial(\phi, \theta)|$ and explain why this means the projection preserves area.
5. (i) Let $\mathbf{r}(u, v)$ be a parametrization of a surface in \mathbb{R}^{3} and $\gamma(t)=\mathbf{r}(u(t), v(t))$. Show the following:

$$
\gamma^{\prime}(t)=u^{\prime} \mathbf{r}_{u}+v^{\prime} \mathbf{r}_{v}, \quad\left|\gamma^{\prime}(t)\right|^{2}=E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}, \quad\left|\mathbf{r}_{u} \wedge \mathbf{r}_{v}\right|^{2}=E G-F^{2}
$$

where $E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}, F=\mathbf{r}_{u} \cdot \mathbf{r}_{v}, G=\mathbf{r}_{v} \cdot \mathbf{r}_{v}$.
(ii) The flat torus in \mathbb{R}^{4} can be parametrized as

$$
\mathbf{r}(\theta, \phi)=(\cos \theta, \sin \theta, \cos \phi, \sin \phi), \quad(\theta, \phi) \in U=(0,2 \pi) \times(0,2 \pi)
$$

Let $\gamma(t)=(\theta(t), \phi(t))$ be a curve in U where $a \leqslant t \leqslant b$. Show that the curve γ, and its image $\mathbf{r}(\gamma)$ in the flat torus, have the same length.
As there is no vector product in \mathbb{R}^{4} we cannot use our current formulae to work out the surface area of the flat torus. What do you think its surface area equals?
6. (Optional) Let $0<a \leqslant b \leqslant c<\pi / 2$ and let $A=(0,0,1)$ and $B=(\sin c, 0, \cos c)$ be points on the unit sphere.
(i) Show that there is a point C which is at a distance b from A and a distance a from B if and only if $a+b \geqslant c$.
[Hint: every point at a distance b from A has the form $(\sin b \cos \phi, \sin b \sin \phi, \cos b)$ for some ϕ.]
(ii) Prove the spherical cosine rule which states that for a spherical triangle with sides a, b, c opposite angles α, β, γ

$$
\cos a=\cos b \cos c+\sin b \sin c \cos \alpha
$$

Show that when a, b, c are small enough, that we can ignore terms of order 3 and above, so that the approximations $\cos x \approx 1-x^{2} / 2$ and $\sin x \approx x$ apply, then the spherical cosine rule approximates the usual cosine rule.

